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The source-sink flow within a rapidly rotating annular region, bounded by a pair of 
concentric circular cylinders and by horizontal end plates, is considered. Fluid is 
injected into the container a t  arbitrary locations on the inner radius and withdrawn 
a t  one or more locations on either the inner or outer radius, through axisymmetric 
slots. The upper end wall is maintained at a higher constant temperature than the 
bottom end plate, while the vertical side walls are thermally insulated; the entire 
apparatus is rapidly rotating about the common axis of the cylinders. An analysis of 
the flow and temperature distribution is carried out in the context of the Boussinesq 
approximation and by assuming that vertical buoyancy effects are negligible to leading 
order. A method for calculation of the temperature distribution within the container 
is developed for physical situations where the effects of the imposed thermal gradient 
and the source-sink flow are of comparable magnitudes; the procedure is applicable 
for an arbitrary distribution of sources and sinks on the side walls. The temperature 
problem is an unusual complicated boundary-value problem, and numerical solutions 
are obtained for a number of different cases. The results reveal a number of interesting 
flows and temperature fields within the container and indicate how the temperature 
field is influenced by the placement and temperature of the sources and sinks, as well 
as by the relative magnitudes of the imposed forced flow and vertical thermal gradient. 
The possible application of the present theory to centrifuges is indicated. 

1. Introduction 
There are a wide variety of geophysical and engineering applications associated with 

flows in a rapidly rotating container, and consequently fundamental problems asso- 
ciated with such flows have been of interest for a number of years. Three basic mech- 
anisms for inducing motion within a rapidly rotating container have been examined 
in some detail in the literature. These are: (i) differential rotation, whereby one or more 
of either the side walls or end walls is rotated at  a slightly different rate from the rest 
of the container (Stewartson 1957; Foster 1972); (ii) an applied thermal gradient, 
whereby an externally applied horizontal or vertical temperature gradient occurs 
(Hunter 1967; Barcilon & Pedlosky 1967; Homsy & Hudson 1969); and (iii) an imposed 
source-sink $ow, whereby fluid is continually injected and withdrawn from the con- 
tainer (Hide 1968; Bennetts & Hocking 1973; Bennetts & Jackson 1974; Conlisk & 
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Walker 1981). In  each of the cited investigations the motion due to a single effect is 
considered, and it emerges that, insofar as the induced geostrophic motion is concerned, 
the effects of an applied thermal gradient and differential rotation are similar. In  many 
situations, two of these effects are present concurrently; for example, in a thermally 
driven gas centrifuge (Olander 1972), which is a device used to separate binary mix- 
tures, a source-sink flow and a thermally induced flow occur. In  the present study, a 
geometry similar to a typical gas centrifuge is considered; specifically, a rapidly rotat- 
ing annular region that is bounded in the vertical direction by horizontal plates. The 
motion due to the combination of an applied vertical thermal gradient and a source- 
sink flow is investigated. 

The general nature of source-sink flows in a rapidly rotating environment was 
established in an extensive series of experiments by Hide (1968). In the majority of 
these experiments, the fluid was contained radially by a pair of concentric cylinders 
and vertically by top and bottom end plates; fluid was uniformly injected at the inner 
cylinder and withdrawn along the outer wall. The basic structure of the flow field 
consists of an interior geostrophic region, Ekman boundary layers on the horizontal 
surfaces and a set of vertical shear layers having thicknesses O(E4) and O(E)) ;  here E 
is the Ekman number. In  the experiments, fluid entering a t  the inner radius was 
observed to be immediately deflected toward the Ekman layers and to traverse the 
container via the Ekman layers. At the outer wall, the fluid is deflected back into the 
shear layers before withdrawal from the container. There is no radial or vertical motion 
in the: geostrophic core, but a circumferential velocity, in a direction opposite to that 
of the rotation, occurs. Conlisk & Walker (1981) have recently considered.the case of 
injection and withdrawal through axisymmetric slots in the side walls; it  was demon- 
strated that although the E* layer patterns can become very complicated, depending 
on the method of injection, only the flow in the E )  layer is affected by the method of 
injection or withdrawal. 

Relative motion within a rotating container may also be generated by imposing a 
temperature gradient. Barcilon & Pedlosky (1967) investigated the flow in a rapidly 
rotating cylindrical container due to a small imposed vertical temperature gradient, 
and analysed the case where buoyancy and centrifugal forces are comparable. In this 
situation, a small vertical drift velocity, proportional to the applied temperature 
gradient, is induced within the core; in addition, only a single E* shear layer is required 
to bring the thermally induced motion to relative rest on the side wall. The cylindrical 
wall of the container was taken to be thermally insulated, and solutions for the 
temperature field were obtained in two parameter ranges. The first of these corresponds 
to a diffusion-dominated regime, in which the temperature is independent of radius 
and varies linearly with vertical distance. The second parameter range is more difficult, 
and corresponds physically to a situation where convection and diffusion of heat are 
of comparable importance. It was determined that a thermal coupling occurs between 
the boundary layers and the core region; this is because energy that is convected into 
the vertical shear layers cannot be removed at the side walls and must be returned to 
the core. In this case the boundary conditions for the geostrophic temperature dis- 
tribution are complicated, and Barcilon & Pedlosky (1967) approach the problem by 
considering small perturbations about the purely diffusive solution. 

Homsy & Hudson (1969) investigate the same problem as Barcilon & Pedlosky, but 
concentrate on the case where the flow is dominated by centrifugal forces. The tem- 
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perature distribution in the case where diffusion and convection of heat are of com- 
parable importance was computed numerically; these results show that the isotherms, 
which are horizontal for the purely diffusive case, are deflected in the local direction 
of the flow to an increasing extent as convection effects become progressively more 
important. Finally, Hunter (1967) considered a similar type of problem but with 
insulated end walls. 

In  this paper the objective is to obtain solutions for the flow field and temperature 
distribution for slightly compressible source-sink flow within a rapidly rotating 
annular region having insulated side walls and end plates maintained a t  constant 
temperatures; in this manner, the flow is exposed to a vertical thermal gradient. The 
analysis will be carried out in the context of the Boussinesq approximation (Spiegel & 
Veronis 1960); consequently, although the geometry is similar to that of some types 
of centrifuges, the results of the analysis are not strictly applicable to the highly com- 
pressed motion within a real gas centrifuge (Olander 1972). On the other hand, the 
analysis reveals the effects of the placement of the sources and sinks on the temperature 
distribution for a Boussinesq fluid and establishes the character of the combined 
thermal and source-sinkinduced flow. It is also of interest to note that the temperature 
problem involves a rather unusual and complex set of boundary conditions. 

To fix the problem mathematically, consider an annular region of height L which is 
bounded by two concentric cylinders of radius aL and bL, where a and b are dimen- 
sionless and b > a. Fluid is injected into the container a t  one or more axisymmetric 
slots along the inner radius and withdrawn at  one or more slots on the outer wall. The 
cylindrical side walls are thermally insulated; the fluid is confined in the vertical 
direction by upper and lower horizontal plates maintained at constant temperatures 
TT and T,* respectively, where T: = T: + AT and AT > 0. The entire apparatus is 
rapidly rotating with angular velocity C2 about the axis of the cylinders. Under these 
conditions, the flow field and temperature distribution are axisymmetric, and as a 
point of reference the geometrical configuration along with a typical source-sink 
geometry is depicted in figure 1. 

If all lengths and velocities are made dimensionless with respect to the container 
depth L and a representative speed Uo, the equations governing the steady motion, 
written in a frame of reference which rotates uniformly with the apparatus, are 

(1  -BTT) sr(q. V ) q  + 2(1 -€TT) (t, x q)  = -Vp - EV x (V x 9 )  - yrT?,+ (?/I+) Ti,, 
(1 .1)  

v.q = 0, (1.2) 

srPr(q.VT) = EV2T. (1.3) 

Here ( r ,  8, z )  are cylindrical co-ordinates having origin on the axis of rotation in the 
lower horizontal plate, and q = (u, v, w) is the velocity vector in the rotating frame; 
P, and fZ are unit vectors in the r- and z-directions respective1y;p and T are the reduced 
pressure and dimensionless temperature difference, defined according to 

T* - T,* * 
Po = g!z-&Q2r2+U,C2Lp, T = - AT ’ (1.4a, b )  

where the asterisk denotes a dimensional quantity, p* and T* are the pressure and 
temperature respectively, and p: is’ the density of the fluid at the lower plate. In 
(1.1)-( 1.3) the five dimensionless parameters that govern the motion are the fluid 
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T*= T: = T , * + A T  
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FIGURE 1. Geometry and co-ordinate system in cross-section. The arrows on the side walls denote 
possible locations for slots of injection or withdrawal of fluid. The flow in the annulus is due to 
a combination of a source-sink flow and a thermally driven flow induced by the imposed vertical 
temperature gradient. 

Rossby number ef, the thermal Rossby number eT, the Prandtl number Pr, the Froude 
nhmber Fr and the Ekman number E ;  these parameters are defined according to 

PCP !22L V 
(1.5) uo eT=aAT, P r = - ,  F r = - ,  E = -  €1 = - 

QL’ k 9 QL2’ 

Here p and v are the absolute and kinematic viscosities respectively, C, is the specific 
heat at  constant pressure, a = l/Tt is the coefficient of thermal expansion, k is the 
thermal conductivity and g is the gravitational acceleration. Finally, in (1. l), y is the 
ratio of the Rossby numbers, defined according to 

y = €T/€l. (1.6) 

In  this study it is assumed that Pr is O( 1) and that the flow is rapidly rotating in the 
sense that E Q 1. It can be shown that the vertical-buoyancy term in (1.1) is negligible 
t o  leading order throughout the flow field provided tha t  Fr B E-i, and this condition 
is assumed. In addition, the physical situation of interest here corresponds to the case 
where the effects of the imposed source-sink and the thermally induced flow are 
comparable, and consequently it is assumed that cf = 0(eT), or equivalently that y is 
O(1). Within this framework, two parameter ranges are of interest here. For €1 Q Ei ,  
corresponding to very weak injection, it emerges that the convective terms in both 
the momentum and energy equation are negligible to leading order; in this case the 
geostrophic circumferential velocity and temperature distribution are readily com- 
puted (Conlisk 1978). For stronger rates of injection, corresponding to €1 = O(Ei ) ,  the 
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convective terms in the energy equation must be considered, and for the core tem- 
perature and velocity distribution there is a complex coupling between the vertical 
shear layers and the geostrophic flow. In §§2-4, this problem is formulated by con- 
sideration of the dynamics of the geostrophic region, the E i  layer and the E* layers 
respectively. The temperature problem in this parameter range is a complicated and 
unusual nonlinear boundary-value problem, and numerical solutions are described in 
$5. The conclusions and relevant applications of the present study are described in $6. 

2. The geostrophic flow 
The geostrophic flow arises from the imposed source-sink flow as well as the applied 

thermal gradient; however, it  may be verified that for < Ef (Bennetts & Hocking 
1973) the leading-order fluid motion may be analysed on the basis of linear theory, 
and consequently both effects may be treated separately. 

The total mass flow &* through the container is in all cases assumed small and is 
given by 

(2.1) 

Note that this equation may be considered as a definition of the representative speed 
U,. All sources and sinks are assumed to be located on the side walls and the net mass 
flux is from the inner to the outer radius. Conlisk & Walker (1981) have recently given 
solutions for all possible methods of injection and withdrawal; in particular, using a 
subscript S to denote the source-sink generated motion, the geostrophic solution in all 
situations is given by 

&* = 2naLZp$ U ,  E i .  

V& = -a /r ,  U& = WG, = 0. (2.2) 

The geostrophic equations for the thermally induced motion follow from (1.1)-( 1.3) 

where in (2.3) the subscripts G and T refer to geostrophic and thermally driven motion 
respectively. The Ekman compatibility conditions are 

and in addition it can be shown readily that in general there is a radial flux outward in 
each Ekman layer equal to - i E i ( U ,  +Vu) per unit length of circumference; in this 
case, since U,, = 0 and since there can be no net mass flux across a cylindrical control 
surface due to the thermally induced motion, it follows that 

VQT(r, 1) +V&(r, 0 )  = 0. (2.5) 

The boundary conditions at  the end plates for the temperature distribution follow 
from (1.4 b) as 

Using (2.5) and (2.6) in (2.3) it  follows that 

Tu(r,O) = 0,  Ta(r, 1) = 1. (2.6) 
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and from (2.4) that 

A .  T .  Conlisk and J .  D. A .  Walker 

W& = - &yEi.  

Consequently the temperature gradient induces a weak vertical drift from the upper 
to the lower Ekman layer. 

The circumferential velocity V& is related through the first of (2.3) to the tempera- 
ture distribution TG, which in turn satisfies 

. 

The solution of this equation depends upon the magnitude of ef, or equivalently, for 
y = 0(1) ,  on the magnitude of eT. For Ef g E),  (2.9) becomes a Laplace equation, and 
the solution satisfying the insulated-side-wall conditions 

- = 0  8% at r = a , b  (2.10) 
ar .. 

is the diffusive solution 
Ta = Z. (2.11) 

In thia case, it follows from ( 2 . 3 ~ )  that 

VQT = k ~ r ( z - 4 ) .  (2.12) 

Note that this thermally induced swirl velocity is in the same direction as the rotation 
for z > 4, and opposite to the rotation for z < 4; the combination gives 

Thus Va < 0 in the lower portion of the annulus, and changes sign along the curve 

z, =;(I+$) .  

For €1 = O(Eb) the convective term on the right-hand side of (2.9) must be con- 
sidered; in addition, the convective terms enter the energy equation to leading order 
in the vertical shear layers, and the side-wall conditions (2.10) areno longer appropriate. 
The determination of the correct geostrophic temperature boundary conditions a t  
r = a, b for €1 = O(E*) is the objective of $53 and 4. Note that in this case, once T&, z) 
is known, VGT(r, z )  is obtained from ( 2 . 3 ~ ) .  

3.  The E i  layers 
The swirl velocity V& = - a/r is independent of z and may therefore be reduced to 

relative rest on the side walls by means of an EA layer. The thermally induced velocity 
VQ, in general depends on z ,  and an E* layer is required for the adjustment to relative 
rest on the walls. The Ei-layer velocities are given by (Conlisk & Walker 1981) 

where 

or 

Ui = CEbe-6, 5 = C(e-t- I),  % = 8C42 E i ( z -  Q) e-6, (3.1) 

g = ( r - a ) E - i ,  8 = 1 ,  C = 1  at r = a ,  

E = ( b - r ) E - i ,  8 = - 1 ,  C = a / b  a t  r = b .  
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The convective terms in (1.3) become comparable to the diffusive terms when 
cf = O(E)), and thus we formally define 

€1 = AE). 

The form of the temperature expansion in the Ei layer is now determined by expansion 
of the geostrophic temperature for fixed z with r + 6, where 6 denotes either a or b ;  
accordingly, in the Ei  layer 

Ti = T'(6, z )  + OEi(Z(5, z )  

where the equation for the correction is obtained by substitution of (3.1) and (3.2) 
into (1.3), and it follows that 

This equation may be integrated subject to the matching conditions that lJp0P,la[, 
I f ,  + 0 as E - t  00. In particular, it is easily verified that 

It miy be observed from (3.3) that the temperature solution does not satisfy the 
insulated-side-wall condition and is therefore not uniformly valid. An inner E* layer 
is required, and this is considered next. 

4. The layers 
The inner E# layers adjacent to the wall reduce the swirl velocity associated with 

the thermally induced motion to relative rest, contain the structure of the source-sink 
flow, and adjust the temperature field to the insulated boundary conditions. In  the 
E* layer, the expansions for the velocity components are written as 

vUf = VGT(8, z, + vOT(7, z, - J2 c7 Eh + E*{v2s(7, 2) + v2T(79 z ) }  + * * * 3 

q = OWOl.(% 2 )  + OE*{W,S(7, 2 )  + W%l.(T, 2 ) )  + * ' - 2  

u* = E*uOT(7, z, + E*{u2S(7, + u2T(7,z)} + (4.3) 

(4.1) 

(4.2) 

where 7 is the scaled variable in the E* layer and 7 = 8(r - 6)E-). Here again 6 denotes 
either a or b, and O = & 1 at r = a and b respectively. Note that VGT(6? z )  is the, as yet, 
undetermined thermally induced geostrophic swirl velocity evaluated as r + 6; 
furthermore, the subscripts S and T are also used here to denote source-sink and 
thermally induced motion respectively. 

Upon substitution of the expansions (4.1)-(4.3) into (1.1) it is readily shown that 
the lowest-order terms satisfy the usual E*-layer equations, 

with the boundary conditions 
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and the Ekman condition 
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w0T = 0 at z = 0 , l .  

The solution is easily obtained as a Fourier series, and is 

nnA 
~ { e * n q - e - ~ m n q c o s  (&J3wnq) +,/+e-fwnvsin (&J3wnq)}cosnnz, uoT = 

n=l w n  
(4.7) 

m 
wOT = 2 An{e4nq - e-f‘nq cos ( iJ3 w,q) - J+ e-fmlrq sin (443 wnq)}  sin nm, 

n=l  

where on = (4nn)), and the Fourier coefficient A ,  is given by 

VQT(8, Z) cos (nnz) dz.  (4.10) 

In  the linear case corresponding to ef + Ei ( A  = 0), VGT is known a t  this stage in the 
analysis and is given by ( 2 . 1 2 ) ;  in this case it follows that 

A, = y8/n2n2 (n odd), 
= o  (n even). 

However, for ef = O(Ed), V,,(8,z) and thus the A, are not yet determined. It is 
convenient at this point to express the A ,  in terms of TQ; to this end, (2.3a) with (2 .7 )  
may be substituted in (4.10), and it may be shown that 

A ,  = - iy8 TG (8, z )  cos nnzdz. (4.11) 

A final comment with regard to this leading-order EB layer flow is that this thermally 
induced motion is purely recirculatory since 

1: 

(4.12) 

for all z and independent of the ultimate values of A,. 
The solution for the source-sink induced motion, uzs, vZ8 and w2s in (4.1)-(4.3), 

depends on the method of injection and withdrawal from the container. It is assumed 
in this study that injection takes place through axisymmetric slots in the inner side 
wall which have a height O(E*). Withdrawal is also assumed to take place through 
analogous slots on the outer periphery. The Eg-layer solutions for all possible modes 
of injection at the side wall have been considered by Conlisk & Walker (1981), and the 
results for wZs will be utilized at a later stage in the analysis. The solution for the 
thermally induced motion, uZT, v2T and wZT, depends on the temperature field, and 
this aspect is considered next. 

In the EB layer, the expansion for the temperature field is written 

(4.13) 
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In this expansion the term O(E*) arises to balance a convective term of corresponding 
magnitude on the left-hand side of (1.3); in addition, Po is the Ei-layer temperature 
perturbation in (3.2). Upon substitution of (4.1)-(4.3) and (4.13) in (1.3) it follows that 

Note that in view of (4.12) it follows that 

-- "1 - o at q = 0. 
a?l 

(4.14) 

(4.15) 

A further integration of (4.14) and subsequent interchange of the order of integration 
leads to the solution 

(4.16) 

The integral in (4.16) may be evaluated using (4.8) in terms of the as yet unknown 
Fourier coefficients as defined by (4.10); however, the details are tedious and are 
omitted here. 

The solution for the thermally induced flow O(E*) may now be considered; this 
motion is important in the sense that it transports a flux of fluid O(E4) on the side 
walls between the upper and the lower Ekman layers; on the outer wall this flux is 
upward, while it is downward on the inner wall. Equations for vm and wZT may be 
obtained upon substitution of the expansions (4.1)-(4.3) and (4.13) into (1.1) and (1.2). 
Upon elimination of the pressure terms, it may be shown that 

The Ekman conditions require that 

(4.17b) 

( 4 . 1 8 ~ )  

(4.18 b )  

where the functions Fo and Fl may be readily obtained by using (4.9) and (4.10); note 
that both functions obtained this way are series containing the Fourier coefficients 
A,. The equations are the usual Etlayer equations apart from the forcing functions 
arising from the thermally induced leading-order recirculation and temperature 
distribution in the E* layer. In general, the solution of (4.17), with conditions (4.18) a t  
z = 0 and 1 and with U2T = vzT = wZT = 0 at q = 0 and as 7+m, is required. This 
boundary-value problem may be solved (in terms of the Fourier coefficients A,) by 
standard methods; however, the algebraic details are involved, and the principal 
result for W2T that is required in the subsequent analysis may be determined without 
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explicitly solving (4.17). This result concerns the vertical flux of fluid in each Ef layer 
arising from the w~~ solution, and will be considered next. 

It follows from (2.3), (2.6) and (2.7) that in general V,, = k & y r  at z = 0 and 1 
respectively; consequently since U,, = 0 to leading order, there is a net radial flux 
outward equal to & &yE* in the bottom and top Ekman layers respectively, per unit 
length of circumference. This thermally induced flux enters or leaves the Ef layer 
through the Ekman extensions of the E# layer, as may be readily verified by integra- 
tion of (4.18) across the Ei  layer. Since U2T + 0, as q --f co, this flux is constant a t  any 
height z .  Thus there is a thermally induced flux upward and equal t o  +ybE* on the 
outer wall in the E* layer per unit length of circumference; there is a corresponding 
downward flux equal to +yaE* on the inner wall. Consequently 

som W 2 T ( 7 ,  dq = - b8, (4.19) 

To complete the description of the temperature field in (4.13) through terms O(E*), 
where again 6 = a and b. 

(4.2), (4.3) and (4.13) are substituted in (1.3), and it may be shown that 

aT.1 (4.20) 
a2T 
+ = A P T 6  u --+w 
a7 ( OT aq OT a x  

Upon substitution of (4.16), (4.20) may be integrated once, and evaluation of this 
expression at q = 0 yields 

where /Il and p2 are given by 

p2(z) = / o m w O T ( S ~ x ) / m  ( t - S )  ZuOT(t, z ) d t d 5 *  

These integrals may be evaluated upon substitution of (4.7) and (4.8), in terms of the 
Fourier coefficients A ,  defined by (4.10); the results are 

(4.22) 

m m  

n= 1 m= 1 

m m  

n= 1 m=l 

p1 ( 2 )  = - 47r x x n A,A,g(m, n) sin mnz cos nnz, 

p2 ( 2 )  = - 2 C 2 A,A,g(m, n)  sin nnz sin m m ,  

where 

The last integral in (4.21) is given by (4.19). We define 

(4.23) 

(4.24) 

which represents the dimensionless flux in the E i  layer associated with the O(E*) flux 
due to the source-sink flow. The value of 23?* will depend on the mode of injection or 
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withdrawal, and may be evaluated from the results of Conlisk & Walker (1981). Two 
cases are of interest here. First consider an axisymmetric slot having width O(E4) and 
located on the side wall at  z = 0; on the scale of the E* layer the slot appears as either 
a point source or sink, and it can be shown (Conlisk & Walker 1981) that 

I C(1-2) (2 > 0) 
F* = -cz (2 < 0) ’ (4.25) 

where C is defined in connection with (3.1). Note that (4.25) holds for either a source 
on the inner wall or a sink on the outer wall at z = 0. 

Another case of interest is that for sources located in the corner regions on the inner 
wall; in this case it may be shown (Conlisk & Walker 1981) that 

F- = C(1-Z)-C‘Z, (4.26) 

where C and C’ denote the dimensionless strengths of each source at z = 0 and z = 1 
respectively, and 

C+C’  = 1, (4.27) 

so that the total mass flux is given by (2.1). For sinks in the corner regions on the 
outer wall, of relative strengths e and 6‘ a t  z = 0 and 1 respectively, the dimensionless 
flux is given by 

F* = e( l -z ) -e ’z ,  (4.28) 
where 

&+el = a/b.  

The flux due to other configurations may readily be constructed using the results of 
Conlisk & Walker (1981). 

The boundary conditions a t  the side walls for the geostrophic temperature dis- 
tribution TG(r, z )  may now be obtained by setting the derivative with respect to r of 
the expansion (4.13) equal to zero at  r = 6. Using (3.3) and (4.21), it may be shown that 

(4.29) 

at r = 6, where 

f,(z) = - C(Z - 9) - A Pr ep, ( z )  - 9- + iyae, (4.30 a )  

fi(4 = - V 2 ( 4 .  (4.30b) 

The solution of (2.9) for the geostrophic temperature distribution is now required 
subject to the boundary conditions (4.29) at r = 6 (6 = a or b )  and conditions (2.6) a t  
z = 0,1, for ei = AEt. Note that although (2.9) is linear, the boundary conditions (4.29) 
are highly nonlinear; this is due to the fact that the terms /3, andPz in (4.30) consist of 
the double sums defined in (4.22). These sums contain the Fourier coefficients A,, 
defined in (4.11) in terms of TG. Because of the unusual and nonlinear form of the 
boundary conditions in (4.29) an analytic solution could not be obtained, and the 
problem was solved numerically; the method is described in $5. 
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5. Calculated results 
The problem defined by (2.6)) (2.9) and (4.29) was solved numerically using finite- 

difference techniques. A square mesh with a uniform mesh length h in both the r- and 
z-directions was used in all calculations. At each internal mesh point, (2.9) was dis- 
cretized using standard central-difference approximations; this procedure leads to a 
set of linear difference equations at each internal mesh point which may be solved by 
successive over-relaxation once an estimate of the solution on the boundary is available. 

The treatment of the boundary condition (4.29) merits some discussion. Consider 
for example a typical point on the boundary at r = a as depicted in figure 2. It wm 
anticipated that variations in the radial direction would be more intense than in the 
vertical direction; in addition, to avoid introducing points outside the solution 
domain, a relatively accurate sloping-difference formula was used for the radial 
derivative. Referring to figure 2, the formula used (Abramowitz & Stegun 1965) is 

h- = ~{-11T1+18T4-9T~+2T,}+O(h4). ;;Il 
The z-derivatives were approximated using standard central-difference formulae a t  
the point 1. This procedure leads to a tridiagonal matrix problem for the temperature 
distribution along r = a, assuming that an estimate of the interior temperature dis- 
tribution is available; a similar problem may be formulated on r = b. 

The solution procedure is iterative, and is initiated by making an initial guess for 
T, a t  all mesh points. The Fourier coefficients in (4.11) were then calculated using a 
Filon quadrature method (Abramowitz & Stegun 1965), and values of p1 and b2 were 
obtained by computing the sums in (4.22) a t  each mesh point on r = a and r = b. 
Next a revised estimate of the temperature distribution on r = a and r = b was 
obtained by solving the tridiagonal problem along the boundary using a direct method 
and by holding the temperature values in the interior fixed. The first iteration was 
completed by revising the interior temperature distribution using successive over- 
relaxation with an over-relaxation factor of w = 1.75. This process was continueduntil 
it converged, which was considered to have occurred when two successive iterates for 
the interior temperature values agreed to within four significant figures at each internal 
mesh point. Typically on the order of two hundred iterations were required. 

For all cases considered, the Prandtl number Pr was set equal to unity, and the 
inner and outer radii were selected according to a = 1, b = 2; with €1 = AEi and 
cT/ef = y ,  various combinations of h and y were considered. In each case, a calculation 
was carried out with 11,21 and 41 mesh points in each co-ordinate direction as a check 
on the accuracy. Close agreement between successive solutions is most difficult to 
achieve near the source and in the corner regions where the solution for TG is believed 
to be irregular. Consider for example the case of a source on the inner wall; the inlet 
temperature T, must be specified corresponding to the fluid entering the annulus at a 
fixed temperature T,. The temperature along the inner wall is strongly influenced by 
the imposed vertical temperature gradient and also by thermal convection for 
ef = O(E*); when fluid enters a t  a temperature which is significantly different from 
that which would normally occur at that vertical location, the source appears as either 
a point source or point sink of heat. For such cases, the temperature solution will be 
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'1 
FIGURE 2. Notation for the finite-difference approximation to the radial and vertical derivatives 

at a typical vertical boundary. The approximation to the radial derivative is given in (5.1). 

n 

1 
2 
3 
4 
5 
G 
7 
8 
9 

10 

A,(r = a) 
0.0895 

- 0.0037 
0.0212 
0.0053 
0.0087 

- 0*0004 
0.0022 

- 0*0005 
0.0031 
0.0015 

Linear 
0.1013 
0 
0.01 13 
0 
0.0041 
0 
0.0021 
0 
0.00125 
0 

A,(r = b )  
0.2231 
0-0173 
0.0268 
0.0059 
0~0100 
0.0030 
0.0053 
0.0019 
0.0033 
0-0013 

Linear 
0.2026 
0 
0.0226 
0 
0.0082 
0 
0.0042 
0 
0.0025 
0 

TABLE 1. Coefficients A,, given by (4.11) on T = a, b for h = y = 1, T, = 0.5. The source-sink 
geometry corresponds to a source at z = 0.3 of strength 1 with two sinks of equal strength at 
z = 0, 1 on r = b .  The linear coefficients (h  = y = 0) are also shown. 

irregular near the source and extreme accuracy of the numerical solution near such 
locations is precluded; agreement in successive numerical solutions was generally 
limited to two significant figures near sources and in the corner regions. 

One important parameter in the calculations is the number no of terms that are 
retained in computing the series in (4.22) for and /3&). Generally, for a given 
set of physical parameters, no must be increased until no significant change in the 
solution occurs. However, as either h or y are increased the number of terms retained 
in (4.22) must be increased substantially, and this  inevitably leads to relatively large 
bomputing times. As an example of the magnitudes of the coefficients in (4.11), a 
comparison is made in table 1 between a nonlinear case ( A  = y = 1) and the correspond- 
ing linear problem for A, on r = a and r = b. 
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0.49 

FIG~RE 3. Isotherm patterns corresponding to the numerical solution of (2.9) for the geostrophic 
core-temperature distribution. The strengths of the sources and sinks are shown; here fluid 
enters at  z = 0.3 and is withdrawn through equal-strength sinks in the corners on r = b. On this 
figure A = 1, y = I and the temperature a t  the source T, = 0.5. Fluid is assumed to leave the 
container on r = b a t  the end-wall temperatures. The dashed lines in this figure correspond to 
the linear solution for A, y 1, T = z ;  here a = 1, b = 2. The dividing isotherm is 0.46. 

Isotherms for a number of example cases are plotted in figures 3-7. In  figure 3, the 
solution for the case y = h = 1 is depicted for a locally ‘hot’ source located at  z = 0.3 
with T, = 0.5; note the source-like level curves near the entrance port on r = a with 
the limiting isotherm near the source having the value 0.46. The dashed lines on the 
figure correspond to the purely diffusive solution T, = z which is valid in the linear 
case (A,  y 4 1) .  The effect of thermal convection near the side wall r = b is to drive the 
isotherms downward in a direction opposite to the thermally induced upward motion 
in the E+ layer. The distortion of the isotherms on the inner wall is a deflection away 
from the hot source. In  figure 4, the effect of an increased flow rate is illustrated; the 
source-sink geometry, the source temperature and imposed temperature gradient 
( y  = 1) are identical with that adopted in figure 3, but now A = 3. It may be observed 
that the effect is to increase the deflection of the isotherms. In  figure 5 ,  the effect of an 
increase in the temperature of the incoming fluid is illustrated for the same source-sink 
geometry, flow rate ( A  = 1) and heating ( y  = l),  but with Ts = 0.8; the substantial 
distortion of the isotherms near the source should be noted. In figure 6, the effect of an 
increased level of differential heating ( y  = 3) is illustrated for the same source-sink 
geometry. 

As a final example, the effect of source-sink placement is illustrated in figure 7, 
where a source of strength C = 1.5 is placed at  z = 0.3 and r = a; sinks of strength 
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FIGERE 4. Isotherm patterns corresponding to the numerical solution of (2.9) for the geostrophic 
core-temperature distribution. The strengths of the sources and sinks ~UW shown; here fluid 
enters at z = 0.3 and is withdrawn through equal-strength sinks in the cornem on r = b. on this 
figure A = 3, y = 1 and the temperature at the source T, = 0.5. Fluid is assumed to leave the 
container on r = b at the end-wall temperatures. The dashed lines in this figure correspond to 
the linear solution for A, y 1, T = z ;  here a = 1, b = 2. The dividing isotherm is 0.49. 

--- 

FIGURE 5. Isotherm patterns corresponding to the numerical solution of (2.9) for the geostrophic 
core-temperature distribution. The strengths of the sources and sinks are shown; here fluid 
enters at z = 0-3 and is withdrawn through equal-strength sinks in the corners on r = b. On 
this figure = 1, y = 1 and the temperature a t  the source T, = 0.8. Fluid is assumed to leave 
the container on r = b a t  the end-wall temperatures. The dashed lines in this figure correspond 
to the linear solution for A, y 1, T = z ;  here a = 1, b = 2. The dividing isotherm is 0.61. 
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FIQURE 6. Isotherm patterns corresponding to the numerical solution of (2.9) for the geostrophic 
core-temperature distribution. The Btrengths of the sources and sinks are shown; here fluid 
enters at z = 0.3 and is withdrawn through equal-strength sinks in the corners on r = b. On 
this figure A = 1, y = 3 and the temperature at the source T, = 0.6. Fluid is assumed to leave 
the container on r = b at the end-wall temperatures. The dashed lines in this figure correspond 
to the linear solution for A, y 4 1, T = 2 ;  here a = 1, b = 2. 

FIGURE 7. Isotherm patterns corresponding to the numerical solution of (2.9) for the geostrophic 
core-temperature distribution. The strength of the sources and sinks are shown; here fluid 
enters the container at z = 0.3 and is withdrawn at z = 1, r = a and at  z = 0.8, c = b. On this 
figure A = 2, y = 0 and the temperature at  the source T, = 0.6. Fluid leaves on r = a, z = 1 
at the end-wall temperature; the temperature at the sink r = b, z = 0.8 is T,, = 0.4. The 
dashed lines in this figure correspond to the linear solution for A, y 4 1, T = z; here a = 1, 
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- 0.5 and a/b are placed at  r = a, z = 1 and r = b, x = 0.6 respectively. The tempera- 
ture of the source is Ts = 0.6, while the sink temperature on r = b is taken to be 
Tsink = 0.4. In this case, h = 2 and y = 0 (eT 4 E t ) ,  and consequently the temperature 
distribution is determined entirely by forced convection. Note the bending of the 
isotherms near the sinks in the direction of the local forced flow. The source-sink 
geometry in this figure is similar to that used in actual gas centrifuges (Olmder 1972). 

6. Conclusions 
In this paper, a source-sink stratified flow within a rapidly rotating container has 

been examined, and a method for computing the temperature distribution within the 
annular region has been developed for a wide range of thermal (eT) and fluid ( E ! )  

Rossby numbers. The temperature distribution in the container has been shown to be 
strongly influenced by the placement and temperature of the sources and sinks in 
addition to the relative magnitudes of et and eT. Heat-transfer rates may be evaluated 
from the numerical solutions; at the end walls the heat-transfer rates are increased by 
increasing h or for increased source temperatures. Heat-transfer rates a t  the side walls 
are generally increased with increased A. The present analysis applies to a wide variety 
of source-sink geometries, and can readily be extended to consider the case of slots 
having an O( 1) height with a distributed flow and temperature distribution (Conlisk 
&Walker 1981). 

Finally, it is of interest to discuss the relation of the present analysis to the problem 
of centrifugation. In a gas centrifuge, the motion of a strongly compressed gas must 
be considered, and the Boussinesq approximation is not valid; however, the basic 
structure of the flow is similar to that discussed here, and the present analysis provides 
an insight into the nature of the temperature field with a source-sink flow. The types 
of fluid motion that have been discussed here may apply to a liquid centrifuge where 
a separation of a binary liquid mixture is required (Svedberg & Pederson 1940; McCall 
& Potter 1973; Birnie & Rickwood 1978; Fujita 1975); in this case, the overall density 
variations are small, as is required for a Boussinesq analysis to be valid. 
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